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The response of a spin % in solids, subject to a first-order quadru-
polar interaction, to a spin lock pulse sequence is calculated. The
results are valid for any ratio of quadrupolar coupling, wq, to
the amplitude, w;, of the RF pulse. It is shown here that the
measurements of the central line intensity as a function of the
second pulse length can be used for the determination of quadrupo-
lar parameters using various phase cycling techniques. It is proven
that the DQ coherences developed during the first pulse can be
selectively detected. © 1997 Academic Press

INTRODUCTION

Investigation of multiquantum (MQ) coherences has re-
ceived agreat deal of interest in NMR (1-7). Spins of value
higher than 3 with quadrupolar splitting are multilevel sys-
tems with unequal spacing between the energy levels. As a
result, a single RF pulse acts selectively, being resonant to
a certain transition. A pulse which is applied to a single
guantum (SQ) transition may excite other off-resonance SQ
transitions as well as the MQ coherences. However, MQ
transitions are not detected in this type of experiment, but
these can be studied by using various pul se techniques. Par-
ticularly, double quantum (DQ) transitionsin spin 3 systems
are well investigated by a combination of multipulse tech-
niques with two-dimensional NMR (8); a combination of
spin lock and rotary echo pulse sequences (9); and spin
echo pulse sequences (10).

Application of computer algebra eases the calculations for
spins higher than 3 as it allows for efficient matrix manipula-
tions. Recently, explicit analytical expressions were reported
for spin 3 (11) and spin 5 (12) for two-pulse experiments
with time delay between pulses. These solutions indicate
that under soft pulse excitation conditions, which retain the
first-order quadrupole, the MQ coherences, which are devel -
oped during the first pulse, are detected at the end of the
second pulse as SQ coherences. Also Solomon echoes were
calculated analytically for spin 3 (13) and % (14). Some of
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these echoes (‘‘forbidden’” echoes) arise exclusively from
the refocusing of MQ transitions.

In this paper we use the same pulse sequences employed
for spins 2 and 3 in (15) to investigate MQ transitions for
spin 4. These two-pulse sequences include various phase
cyclings as well as a combination of spin lock and spin
echo pulse sequences. The first-order quadrupole is retained
throughout and, in particular, in the calculations of pulses.
Thus our results are applicable to symmetrical (i.e., feature-
less) lineshapes. However, the measurement of the inte-
grated areas of the central line as a function of the second
pulse length permits the determination of quadrupolar pa-
rameters and the true chemical shift of the line. The response
of half-integer quadrupolar spins to two-pulse sequences as
the function of the second pulse length has more extrema
than that of one pulse. The shape of this curve is determined
by the ratio of quadrupolar coupling, wq, to the applied RF
field in the case of asingle crystal or by the ratio of quadru-
polar coupling constant, e’qQ/#, to the applied RF field in
the case of powders. Various two-pulse sequences produce
different shapes of the response curve in question. This
makes the fitting procedure more accurate as the results for
quadrupolar parameters should be consistent for each experi-
ment. The second-order effects are ignored in our treatment
in contrast to (16) where second-order quadrupolar broaden-
ing is removed under MAS conditions by correlating multi-
ple quantum and single quantum coherences. It should be
noted that the central transition is broadened by second-
order quadrupolar effects. In this paper we assume that the
experiment would produce featureless spectra from which
one can determine quadrupolar parameters.

THEORY

The Hamiltonian of the system excited by an RF pulsein
the rotating frame associated with the central transition, and
neglecting the offset and high frequency terms, is

H® = HE + HI, [1]
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where

HE =%wQ[3|§— (1 + 1)],

3e%0Q .
=——7°__(3cos’8 — 1+ n sin?g cos 2«a),
“e = B2l - 1)ﬁ( B n sin“g )
H = —wi(1xcos ¢ + I,sin ¢).

The Euler angles « and § describe the static magnetic field
with respect to the quadrupolar principa axis system
(QPAS); the RF amplitude w, and phase ¢ describe the
pulse. Here HY is the first-order quadrupolar Hamiltonian,
e?qQ/# is the quadrupolar coupling constant, and 7 is the
asymmetry parameter. The quadrupolar coupling we can be
defined experimentally as one-half of the frequency differ-
ence which separates two consecutive lines in the spectrum
of a single crystal. Angular frequency units are used, and
the effects of relaxation and second-order quadrupole are
ignored.

The dynamics of a spin £ excited by two RF pulses of
arbitrary phases is given by the density matrix py, ,(t1, t2),

Pone,(t1, o) = exp(—iH*t,)exp(—iH 2 t;) p(0)

X exp(iHt)exp(iH?t,), [2]

where

p(0) =1,

and t;, ¢, and t,, ¢, are the durations and phases of the first
and the second pulse, respectively.

DENSITY MATRIX AFTER ONE PULSE

Consider the dynamics of a spin 5 excited by an RF pulse

with an arbitrary phase ¢. Note that

HE = exp(—igl,)HZexp(i¢l,), [3]
where HQ, HQ = —w;l,, is the Hamiltonian of the RF
pulse applied along the x axis. Thus using Eq. [1] one can
write

H® = exp(—igl,)H Pexp(idl.). [4]
Then the density matrix for the system, p,(t,), after an RF
pulse of arbitrary phase ¢ is given by

p¢( tl) — g idlg-iH (O)tlei¢|z lLe id)lzeiH(O)tleiqSIZ

— e pg(ty)e,

[3]

where po(t;) is the density matrix of the system excited by
an +x pulse. At this point it is easy to relate the density
matrices after a pulse along the +x axis, po(t1), and after a
pulse along the —x axis, p,(t1)(¢ = 7), viz.

pr(ta) = € Mzpo(ty)e'm. [6]

Furthermore, the matrix |, is diagonal in the |1, M) (M is
the magnetic number) representation which simplifies the
computation of Egs. [5] and [6], giving

(Kl pa(t)[ 1) = (Kl po(t) | Y exp(i(k = [)¢),  [7]

where (k| ps(t1)|j) and (K|po(t1)] j) are matrix elements
of matrices p,(t;) and po(t;) located at the kth row and the
jth column of their matrix representations. The immediate
result which follows from Egs. [6] and [ 7] is that only line
intensities of odd quantum coherences change sign when
the —x pulse is changed to a +Xx pulse and vice versa.
Concurrently the polarizations and the even quantum coher-
ences remain unchanged when the pulse phase is changed
by 180°. In general, shifting the pulse phase by ¢ changes
the phase of m-quantum coherences by me¢ but the polariza-
tions remain unchanged (see Eq. [ 7]). The matrix elements
of p,(t,) for spin4 have been calculated previously (14, 16).
Making use of Eq. [7] allows the calculation of p,,(t;),
the matrix form of which is given in Table 1, in notation
described in (16). In the next section we use the results of
Table 1 to calculate a response of the system in question
to spin lock pulse sequences. However, it should be noted
that the results represented by Egs. [1] —[7] are valid for
al haf-integer spins.

DENSITY MATRIX FOR SPIN LOCKING SEQUENCES

The spin lock pulse sequence is composed of two RF
pulses without time delays. The first pulse is applied along
the y axis, whereas the second pulseis applied along the —x
axis. The density matrix after a spin lock pulse sequence is
given by

pﬂ-/zyﬂ-(tl, tz) = exp(_|H(W)tz)pﬂ-/zexp(|H(7T)t2) [8]

The diagonalization procedure for H™ has been discussed in
detail in (17). Thus Eq. [8] can be developed using computer
dgebra‘‘Maple”” However, in most cases only the central line
isobserved in experiments on powders. Thus below we focus on
lineintensity from thistransition. The density matrix component
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TABLE 1

The Density Matrix of Spin % after the RF Pulse Applied along the y Axis

(1)
—idIED) + (15
—(E) — i(15)
(34 — 1
(1) + id1E)
—idIE) + (15)
() — i(137)

~

139 + 13
(127)
—i1Z) + (13)
—(2% — (129
(129 - (129
(125 + i41Z°)
(137
7 —id13)

(29 + (59
(125 - i413°)
(15
2% + 159
—iIEY + (139
—(13)
2% + (13
1) — 159

~(IE) + (5
(129 + (13°)
(1)
i3 + (3%
(39 — 1059
~(3)

=i = 15 (1) = 50
= + 5% =i = (179)
IIZ9 + (5% =) + K15
(1% (5%
1y —(12°)
(IZ9) =g 1Y + (159
(3 + 1% =i = (59 (R — g
i) + (5 =) + i15%) =i = (159

(1% = 2Xy Ty cos wity
(127y = 2YyZy COS wilty
(135 = 2Z,Y, cos wily
(149 = 2Ty Xy COS wity
(118 = 2Xy Ty SN wily
(I27y = 2YyZy Sin wity
(3% = 2Z,Yy Sin wity
(135 = 2Ty Xy SN wity
I + 105 = (0GZa + YaTa)oos with + i0GZ = YaTa)sn wits
(%) + 057 = (XuYo + ZuTy)c0s wits + i(Xu Yo — ZuTy)sin wity
(3% + 3% = (XaXey + TuTo)cos wits + I(XaXy — TuT)SiN wity
(5% + iI5%) = (XuXg — TuTz)cos wity + i(XuXy + TuTz)sin wity
%) + K9 = (XaYa — ZuTa)c0s wiy + 0¥y + ZuTo)SN wits
(7Y + 157y = (XuZoy — YuTo)Cos wity + i(XuZy + YuTo)sin wity
i(YaYy —
i(YaXy — TuZz)sin wity

(123 + 1029 = (YaYy + ZuZy)c0S wits — ZuZa)SiN il
(I2% + i(13% = (YuXo + TuZy)C0S wity —
() +105%) = (YuXg — TuZy)00s wity + i(YuXy + TuZz)sin wity
129 + 1139 = (YaY — ZuZy)os wity + i(YaY + ZuZg)sin wits
(%) + 0% = (ZuXo + TuYz)C08 witts + i(ZuXo) — TuYz)sin wiity

<|§'5> + |<|)3/'5> = (Zlixzj — Tlinj)COS wijtl + i(ZliXZj + Tlinj)Sin wijtl

() + i137)
(137
—(1% — i(13°)
(129 - (129
(1% + i1z
—i1Z) + (13)
—~(127)
i3 + 13

(15
I + i3
—idIES) + (15
(5 — (1)
(3% — (13
1) + i3
—idIE) + (13

(1)

Note. The functions (l}') are reported in (17).

(5] prr2(t1t2) | 4) which corresponds to the central transition

is caculated to be

— (1Z%)(Vag + Vao) — (12°) (Va1 + Va2)

— (13" (Vs + Vag) + i ({13°)Cs + (127)Cs

(51 prrza(ts, 12)[4) = —(13°)(Dy + Dy)

+ (17%C; + (13°)Cs — (13°)(Cio — Ci2)

+ (157)(Ds + Da) — (15°)(Ds + De)
+ (13°)(Dy + Dg) — (15%) (V2 — Va)
- <I)l,’4>(V3 -V, + <|>l,’6>(V5 + Vg)

= (17°) (V7 = Ve) — (13°)(Ve + Vo)
— (I3 (Vs — Vi) = (16*)(Viz + Vag)
= (1x*) (Vs + Vig) — (13°) (Va7 + Vig)

+ (12°)(Cus — Ci6) — (1Z*)(Cis + Cx)

- <|>1<'7>(C22
+ (1%°)(Cx
+(13°)(Cus
- <|>l/'7>(C21
+ (13°)(Cxo

— Ca) — (I%°)(Cy + Cy)
— Cx) — (I7°)(Cs + Cu)
+ Ci5) — (17*)(Cy7 — Cuo)
+ Cz) — (15°)(Cs — Cx)
+ Ca)).

[9]
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Here functions C; (i = 1, ..., 32) are given in Table 2.
The equations for D’s and V'’s are given in Table 3. Note
that C’s, V's, and D’s are functions of the second pulse
length t,, whereas line intensities (I"") are functions of
the first pulse length t;. In general, the density matrix of
spin 4 excited by an RF pulse is defined by 32 independent
components denoted by (I1*")). All of these are present in
Eqg. [9].
The profile of the central transition is defined as

F®(t t) + iFY° (b, 1) = (5] pran(ty, t)[4). [10]

In the next section certain pulse sequences are considered
which allow selective detection of some multiquantum tran-
sitions.

DETECTION OF MQ TRANSITIONS

The density matrix component (5| p,/2.(t1, t2)|4) is
complex (Eq.[9]), and thusthe FID is detected by quadra-
turein both x and y channels (Eqg. [10]). It should be noted
that odd quantum coherences, developed during the first
RF pulse, are detected in the x channel, whereas even
guantum coherences and polarizations are detected in the
y channel. Consider the following pulse sequence (se-
quence 1) (see Table 4). Applying a spin lock pulse se-
quence of this type (where the phases of the first and third
pulses as well as the phase of the receiver after the second
and fourth pulses are different by 180°) will result in the
cancellation of the y component of the FID. However, the
equation for the x component is simply deduced from Eq.
[9] being twice as big as that given by Eqgs. [9] and [10].

TABLE 2
The Functions C;(t,) Used in Egs. [13], [14], [15]
for the Density Matrix Component ps, (t;, 7, t2)

The Functions Di(t;) and Vi(t,) Used in Eq. [9]

15

Ci = Yy TuXyZy €oS wity
Cg = zliT]_iXZngj Cos u)ijtz
Cs = TyTuXyXy €os wyt,
C4 = xliT]_iXZjng Cos wijtz
Co = ZyTuXyX5 €OS wit,
C]_l = TliTliXZjYZj COs wijtz
Ciz = YyTyuXyYy COS wits
Cl5 = zliT]_iXZszj COs wijtz
C]] = YliTliXZjXZj COos wijtz
Clg = TliTliXZjZZj COs wijtz
C21 = XliTliXZjZZj COos wijtz
Cus = Yy TyXy Ty COS wit,
C25 = XliTliXZjYZj COos wijtz
Cyr = ZyTyXy Ty COS wit,
ng = XliTliXZjXZj COos w”tz
Ca = TyTyXy Ty COS wit,

Cs = ZyiTuXyYy Sin witz
Cs = YuTuXyZy SN wit,
C; = Xy TuXyTy SN wit,
Cs = TuTuXyXy SN wit,
Cio = ZyTyuXgXy Sin wit,
Crz = TyTuXy Yy SN wit,
Cu = Y5TuXy Yy Sin wity
Cis = ZiTuXyZy SN wity
Cis = Y5TuXyXy sin wit,
Cro = Ty TuXyZy SN wity
Cr = XyiTuXgZy Sin wit,
C24 = Y1|T1|X21T21 sin wutz
Cos = XiiTuXyYy Sin wit,
CZB = Zl|T1|X21T21 sin wutz
Cao = Xy TuXgXy SIN wit,
Ca = TyTuXy Ty SN wit,

TABLE 3
1 +
Dl = 5 X1|X11T1|T1| cos l//u
1 _
D2 = 5 T2|T21X2|x2| cos l/fu
1 +
D3 = 5 YlIYlJTlITlJ cos lyblj
1 _
D, = E ZZIZZJXZIXZI Cos l/fu
1 +
D5 = 5 ZlIZlJTlITlJ cos lyblj
1 _
DG = 5 Y2|Y21x2|X2| cos lpu
1 +
D; = 5 TyTyTyTy cos
1 _
Dg = 5 XaXgXa Xy COS

Vi = XYy Ty Ty COS i)
V, = Z5TyXaXy COS hij
V3 = TuX5Xa X5 COS iy
Vi = XqiTyjTyiTy €OS iy
Vs = ZyXyj Ty Ty €COS i}
Ve = T5Y3XaXy COS ij
V7 = ZyYy Ty Ty COS
Vg = Y5Z5X5 X5 COS iffjj
Vo = Yy TyTyTy COS ¢
Vio = Z5iXyXaXy COS hij
Vi = TuZyTyTy COS
Viz = YaXyXaiXy COS ifsjj
Viz = XYy Ty Ty Sin g
Via = TaZyXaXy SN if
Vis = TyXyTyTy SN )
Vie = TaXyXaiXy SIN ¢rif
Viz = ZyXy Ty Ty Sin iy
Vig = YaT3XaXy SN if
Vig = YuZyTyTy Sin if
Voo = YaZyXaXy SN if
Vo = YyTyTyTy SN i)
Voo = XoiXg XXy SiN ifj
Vo3 = ZyTyTyTy SN i)
Vaos = X Yo Xai Xy SIN ¢rif

Note. The symbol =f;_, in front of each term is omitted but assumed.

Note. The symbol ={;_; in front of each term is omitted but assumed.
— wyby, ¥ = (wa — wate.
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Thusthe density matrix component of the central transition
for sequence 1 is

(51 p(t1, 12)[4) = 2 Re{(5| prra-(t, o) [4)} . [11]
Sequence 1 can be modified such that the phase of the re-
celver after second and fourth pulses remain unchanged.
This new sequence (sequence 2 from Table 4) resultsin the
cancellation of the x component of the FID. At the same
time the y component is twice as big as that produced by
the sequence which consists of the pulses 1 and 2 only. The
equation for the density matrix component of the central
transition becomes

(5]p™(t, t2)|4) = 2i IM{(5]pr2-(t1, )[4} . [12]

From our previous results (12), the density matrix compo-
nent of the central transition for the sequence (sequence 3
from Table 4) is designed for so called even quantum detec-
tion (rotary echo type) and is given by
(51p=3(ty, 1) |4) = 2i{{13°)Cs + (17")Cs

+ (17%)Cy + (12°)Cg + (13°)(Cio — Cr2)

+ (1Z°)(Cus — Ci6) + (1Z*)(Cis + Cy)

+ (127)(Caz = Ca) + (15°)(Cos + Cig)

+ (1x°)(Co0 — Cz) + (17°)(Cy + Cuy)

TABLE 4
Pulse Sequences Used in This Paper

Sequence Q Q. Qr
1 y —X y
-y -X -y

2 y —X y
-y —X y

3 —X —X y
X —X y

4 y -X y
-y —X y

—X —X y

X —X y

5 y —X -y
-y -X -y

—X —X y

X —X y

Note. Q;, Q., and Q indicate the phase of the first and second pulse
and the receiver.

+ (17°)(Ciz + Cis) + (17*)(Cy7 — Cuo)
+ <|31/'7>(C21 + Cy) + <|31/'3>(Czs - Cx)

+ (13°)(Co + Ca1)}. [13]
Sequences 2 and 3 can be combined into sequence 4 (Ta-
ble 4), such that the resultant magnetization vector is
aligned with the z axis, and the equation for the density
matrix component of the central transition for the se-
quence 4 is

(5] p=H4(t1, 1) [4) = 4i{{13°)Cs + (127)Cs
+ (17%)Cy + (13°)Cq + (15°)(Cra — Cie)
+ (1x°)(Ce — Cz) + (13°)(Cys + Cis)

+ (13°)(Cy + Ca1)}. [14]
Thus 4-quantum coherences, developed during the first
pulse, are detected. However, if sequences 2 and 3 are com-
bined into sequence 5 (Table 4) such that the phase of the
receiver in Sequence 2 is changed by 180° then double
guantum coherences developed during the first pulse are
detected,

(5] p=H(t1, 1) [4) = 4i{{I13°)(C — Cr2)
+ (1Z")(Cs + Cx) + (1%®)(Css + Cis)
+ <|§'5>(C9 + Cu) + <|§'4>(C17 — Cu)

+ (13°)(Cs — Ci7)} . [15]

It should be noted here that the response of the system in
question becomes less complicated as the number of pulses
increases. However, at the same time the signal-to-noise
ratio decreases which can limit the applicability of long pulse
sequences for powders. On the other hand these pulse se-
guences allow the determination of quadrupolar coupling in
a single crystal, and the quadrupolar coupling constant and
asymmetry parameter in powders. These values, obtained
using the variety of pulse sequences, should be consistent
and this improves the level of confidence of our results. The
important feature of sequence 5 is that it drastically reduces
spurious signals (18) generated by the NMR probe for nuclei
with small gyromagnetic ratios. When used in NMR with no
quadrupolar splitting, this sequence places the magnetization
vector along the z axis and causes no response. However for
quadrupolar nuclei, the signal is detected due to multiquan-
tum coherences developed during the first pulse.

Figures 1-4 show the theoretical line intensities for
sequences 1, 2, 4, and 5 calculated for different ratios of
wol wy.

A ‘“Maple’’ program which numerically computes the
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FIG. 1. The response to sequence 1 as the function of the second pulse length, t, for t; = 3 us, wi/2r = 50 kHz and (1) we/27 = 0 kHz,
(2) wol2r = 50 kHz, (3) wo/27 = 100 kHz.

Profile of the central transition for sequence 1
[}
AN

Pulse length, 1, (us)

Profile of the central transition for sequence 2

FIG. 2. The response to sequence 2 as the function of the second pulse length, t, for t; = 3 us, wi/27 = 50 kHz and (1) wq/27 = 0 kHz,

(2) wol2m = 50 kHz, (3) wol27 = 100 kHz.
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Pulse length, r, (us)

Profile of the central transition for sequence 4
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FIG. 3. The response to sequence 4 as the function of the second pulse length, t, for t; = 3 us, wi/27 = 50 kHz and (1) wo/27 = 0 kHz,

(2) wol2r = 50 kHz, (3) wo/2r = 100 kHz.
2 vs 8 10 12 14
14 ) Pulse length, ¢, (us)
1

FIG. 4. Same as described in the legend to Fig. 1 for Sequence 5 but (1) wo/27 = 50 kHz, (2) we/27r = 100 kHz.
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responses to sequences 1 and 2 for half integer spins of
arbitrary amplitude is supplied in Appendix.

CONCLUSIONS

The response of a spin $ to spin lock excitation and to a
variety of two-pulse sequences involving the combination
of rotary echo and spin lock sequences is presented. The
first-order quadrupole is retained throughout the calculation.
Our primary focusis on the central transition asit represents
the main signal of detection in powders. Also calculated is
the density matrix of any half-integer spin after an RF pulse
of arbitrary phase. This shows that when the phase of the
pulse is shifted by ¢, the phases of m-quantum coherences
change by m¢. However, these are not detected except for
the case of m = 1. Use of two-pulse experiments allows the
detection of multiguantum coherences through SQ coher-
ences after the second pulse. It is proven here that DQ coher-
ences can be selectively detected using appropriate phase
cycling. In this case, the central line intensity is a function
of both pulse lengths, the quadrupolar coupling and the am-
plitude of the RF pulse. Fitting curves representing the cen-
tral line intensities as the function of the duration of one of
the pulses allows the determination of quadrupolar parame-
ters. Finally, we remark that our analytical solution for the
eigenvalue—eigenfunction problem (17) can be used in the
analysis of (19) for spin 4.

APPENDIX

# this program calculates the two-pulse response for spin i
#solid state nmr

# set spin magnitude to 7/2

i:=7/2;

nsize:=2*i+1;

i_plus.=array (sparse,1..nsize,1..nsize):
i_minus.=array(1..nsize,1..nsize):
i_x:=array(1..nsize,1..nsize):
i_y:=array(l..nsize,1..nsize):
i_z:=array (sparse,1..nsize,1..nsize):
i_g.=array(sparse,l..nsize,1..nsize):

i_row:=1;

for m from -i to i-1 do

i_plus[i_row,i_row+1]:=evalf (sgrt((i+m+21)*(i-m)));
i_q[i_row,i_row]:=i*(i+1)-3*m**2;
i_z[i_row,i_row]:=-m;

i_row:=i_row + 1,

od;

i_z[i_row,i_row]:= -i;
i_g[i_row,i_row]:=i*(i+1)-3*i**2;

i_minus:=evam(transpose(i_plus));

i_x:=evam(i_plus + i_minus)/2;
i_y:=evam((i_plus - i_minus)/(2*1));

with(linag);

# set quadrupolar coupling to 50 kHz and rf amplitude to
50 kHz

wq:=evalf(0.050*2*Pi);
wl:=evalf (0.050*2*Pi);

# set duration of the first pulse to 3 microsec and phase to
pi/2

t1:=3.0;

phi:=Pi/2;

hg: =evalm(-wq/3*i_g-wl *i_x);
hal:=evalm(-wa/3*i_g+wl*i_x);
hgg:=evalm(i_z);

ul:=exponentia (hg,-1*t1);
u_l:=exponentia (hqg,l *t1);
u2:=exponentia (hqq,-1*phi);
u_2:=exponentia (hqqg,l * phi);

rol:=evam(u2& *ul& *i_z& *u_1& *u_2);

u3:=exponential (hgl,-1*t);
u_3:=exponentia (hqgl,l *t);

sum:=0;
nl:=nsize/2+1,;
n2:=nsize/2;

for i from 1 to nsize do
for j from 1 to nsize do

term:=u3[nl,i]*rol[i,j]*u_3[j.n2];
sum: =sum-+term;

od;
od;

answerl:=Im(sum);
answer2:=Re(sum);

# time t scale is in microseconds
plot(answerl,t=0.01..15);
plot(answer2,t=0.01..15);
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